Konference: 2009 XXXIII. Brněnské onkologické dny a XXIII. Konference pro sestry a laboranty
Kategorie: Onkologická diagnostika
Téma: IV. Laboratorní diagnostika nádorů
Číslo abstraktu: 041
Autoři: prof. MUDr. Ľudovít Jurga, DrSc.; MUDr. Silvia Cingelová, Ph.D.; Ivana Nováková; Ing. Dagmar Berkešová; MUDr. Marek Majdan, Ph.D.; MUDr. Etela Mišurová; Prof. MUDr. Martin Rusnak, CSc.; Edita Zezulková
Ischemia Modified Albumin (IMA) is the first blood test for cardiac ischemia (innstable angina pectoris and early myocardial infarction) approved by US FDA. IMA is based on the discovery that albumin, an abundant protein in blood is altered when exposed to ischemic tissue. It rises within minutes of the onset of ischemia and remains elevated for several hours after cessation of ischemia. IMA rises in the presence of ischemia and not as a result of necrosis. IMA, which appears to be an indicator of oxidative stress, may not be specific for cardiac, brain or lower extremities ischemia.
Anecdotal evidence suggests that IMA may increase as a result of oxidative stress in serum of cancer patients. Oxidative stress (OS) in cancer patients is caused by many reasons. Above all, it is predominance of glycolysis also in the presence of oxygen, which is energetically disadvantageous. The another factors supporting the IMA production are cancer anemia, hypoxia, acidosis, cancer cachexia (catabolism), vomiting, production of pro-inflammatory cytokins, and mainly radiotherapy and/or antineoplastic chemotherapy; they relevantly increase free radicals production. There is suppression of T-cells during OS. Moreover, OS is a potent factor in vascular cell proliferation. At the same time, there is depletion of plasma and tissue antioxidants (redox systems). All these factors contribute to progression of neoplastic diseases. Moreover, myocardium has less activity of catalase, superoxid dismutase and peroxidase; consequently it is more sensitive to oxidative stress and to development od cardiomyopathy. We intended to try use IMA as a relatively universal tumor marker and as a test of cadiotoxicity of antineoplastic drugs (anthracyclines, paclitaxel, trastuzumab; 5-fluorouracil which is responsible for coronary spasms mediated probably by endothelin production).
Patients and Methods
From 2nd January till end October 2007 the IMA
was examined in serum of 429 cancer patients; reference value
(cut-off point) was determined by examination of IMA serum level in
74 healthy adults.
IMA is detected in sérum using the Albumin
Cobalt Binding test(ACBR test, ISCHEMIA Technologies, Inc., Denver,
CO USA). A cobalt solution is first added to the serum, followed by
the addition of dithiothreitol (DDT). The unbound cobalt reacts
with the colour forming agent and is measured spectrophometrically.
The higher the amount of unbound cobalt, the higher the ACB test
value, and therefore the greater the concentration of IMA. Maximum
time from vein to result is 2 m hours. It was found that
increases in endogenous lactate inhibited the test. The results of
ACB test was interpreted cautiously in cases with serum albumin
<20 g/L or >55 g/L. Therefore, serum levels of lactate and
albumin were determined. Data about IMA concentrations in
noncardiac ischemia are limited but cancer patients with renal
and/or liver failure, uncontrolled diabetes and sepsis were
excluded. Results were evaluated by methods of decision analysis
(the area under the Receiver Operator Characteristic Curve - ROC).
The area under the ROC was calculated for each modeFs ability to
discriminate cancer patients from healthy individuals. Ap value<
0,05 was considered as significant.
Results
Arithmetic mean of healthy adults and of cancer
patients was 83.6 TJ/mL and 91,5 U/mL, respectively (p-value <
2.2 e-16). ROC curve including sensitivity (true positivity),
specificity (true negativity) and value of AUC is in Fig.l. Changes
of IMA sérum level according to age (< 55 years, 55 - 75 years,
> 75 years) were statistically non significant (NS). We found
signficant increasing tendency of IMA levels dependent on the rise
of clinical stage. Statistically significant were differences
between lst and 3rd and 4th and between 2nd and 4th clinical stage.
The statistically significant increase of IMA levels were observed
in majority of examined kinds of malignant tumors in descendent
order (gastric cancer, lung cancer, rectosigmoidal cancer, colon
cancer, renal cell carcinoma, and others). Interestingly, the
increase of serum IMA levels in rectal cancer and breast carcinoma
was not significant. There was close correlation of IMAand albumin
levels (p-value < 2.2e-16; 95% CI). Serum IMA levels were not
influenced by lactate levels (p-value=0,59 (95% CI).
Statistically significant increase of IMA levels
were found in patients treated with different regimens of
chemotherapy and/or radiation therapy. The IMA levels in descendent
order were as follows: cisplatin +gemcitabine (100.98 U/mL),
cisplatin + etoposide (91,88 U/mL), 5-fluorouracil + folinic acid
(90,79 U/mL) and other (90,58 U/mL); significant increase was
observed also during radiotherapy (90,26 U/mL). Very interesting
was the observation in patients with non evidence of disease (NED)
less than one month after chemotherapy and more than one year after
chemotherapy; the mean values were 95,4 U/mL and 86,9 U/mL,
respectivelly (p-value = 1.076e-08).
The ROC curve for IMA in all patients was convex
against axis y; the area under the curve (AUC) = 0,718. The high
AUCs (0,653 - 0,857) in increasing order were observed in the group
of other cancers, renal cancer, colon cancer, rectosigmoidal
cancer, gastric cancer and lung cancer. The best course of ROC
curve was found out in patients with lung cancer. These results,
i.e. sensitivity 69,9%, specificity 93,0%, and AUC 0,857 are in
Fig. 2. The very high AUC was found in patients with IIIrd and IVth
clinical stage (0,806 and 0,739, respectively).
The highest AUCs were recorded in patients
treated by combination cisplatin + gemcitabine and cisplatin +
etoposide (0,916 and 0,779 respectively). The ROC curve including
extremely high sensitivity (85,7%), specificity (94,4%) and AUC
value 0,916 is in Fig. 3. At the optimum determined cut-off point,
there was in general recorded the high specificity of serum DVIA
examination at the expence of lower sensitivity. The range of
specificity (true negativity) in all groups of patients was 74,6 -
97,2% (mean = 95,8%).
Discussion
Low levels of reactive oxygen species (ROS) are
indispensable as mediators in many of cell processes, including
differentiation, cell cycle progression or the growth arrest,
apoptosis and imunity. In contrast, high levels and/or inadequate
removal of ROS result in oxidative stress, which may cause severe
metabolic malfunctions and damage of biological macromolecules.
Arecent study indicated an association between activities of
antioxidant enzymes and increased levels of DNA lesions in lung
cancer tissue, suggesting that free radical reactions may be
increased in malignant cells in vivo. Lately, persistent OS in
cancers has been suggested to explain partly activation of
protooncogenes, genome instability, chemotherapy resistance and
metastasis.
Prime targets of ROS are the polyunsaturated
fatty acids in the membrane lipids. This attack causes lipid
peroxidation. Further, the decomposition of peroxidized lipids
yields a wide variety of end-products, including malondialdehyde
(MDA) that is widely used in practice as an indicator of free
radical damages.
Conclusions
On the base of our preliminary experience, the
serum IMA as a result of oxidative stress, could be a promising
tumor marker for stratification of cancer patients and monitoring
of antineoplastic therapy.
References:
- Banerjee, D., Madhusoodanan, U. K., Nayak, S., Jacob, J.
Urinary hydrogen peroxide: a probable marker of oxidative stress in
malignancy. Clinica Chimica Acta 2003; 334: 205 - 209.
- Hrizostov, D., Gadjeva, V., Vlaykova, T, Dimitrov, G.
Evaluation of oxidative stress in patients with cancer. Physiology
and Biochemistry 2001; 109: 331-336.
- Ilhan, N., Ilhan, N. Vascular endothelial growth factor and
oxidative damage in cancer. Clinical Biochemistry 2003; 36:
225-228.
- Kim, Y. T., Kim, W. T., Choi, J. S., Kim, S. H., Choi, E. K.,
Choi, N. H. Relation between deranged antioxidant system and
cervical neoplasia. Int J Gynecol Cancer 2004; 14:
889-895.
- Lases, E. C, Duurkens, V. A. M, Gerritsen W. B. M, Haas, F. J.
L. M. Oxidative stress after lung resection therapy: A Pilot study.
Chest2000; 117: 999-1003.
- Peacock, F. et al. Metaanalysis of ischemia-modified albumin to
rule out acute coronary syndromes in the emergency department.
American Heart Journal 2006; 152: 253-262.
- Wu, A. H. B. Markers for early detection of cardiac diseases. Scand J Clin Lab Invest 2005; 65 (Suppl 240): 112-121.
Supported by Grant ofSt. Elisabeth Univ. of Health Care and Social Work Bratislava.
Datum přednesení příspěvku: 17. 4. 2009