Konference: 2015 20th Congress of the European Hematology Association - účast ČR
Kategorie: Maligní lymfomy a leukémie
Téma: Poster
Číslo abstraktu: P587
Autoři: Mgr. Nikola Tom; RNDr. Jitka Malčíková, Ph.D.; Mgr. Lenka Radová, Ph.D.; Mgr. Barbara Kantorová; Mgr. Filip Pardy; Mgr. Šárka Pavlová, PhD; Mgr. Karol Pál; MUDr. Mgr. Marek Mráz, Ph.D.; MvDr. Boris Tichý, Ph.D.; prof. MUDr. Michael Doubek, Ph.D.; MUDr. Yvona Brychtová, Ph.D.; Mgr. Karla Plevová, Ph.D.; prof. MUDr. Jiří Mayer, CSc.; Doc. MUDr. Martin Trbušek, PhD; prof. RNDr. Šárka Pospíšilová, Ph.D.
Background
Introducing somatic hypermutations (SHM) into genes coding for heavy and light chains of immunoglobulins (IGHV, IGLV) is a physiological process indispensable during antibody maturation. SHM introduction is a two-step process, which in the first step involves deamination of cytosine to uracil by an enzyme Activation-Induced (Cytidine) Deaminase (AID). During the second step, uracil and potentially also flanking nucleotides are removed and error-prone DNA polymerases (mainly polymerase eta) are recruited to fill the gap. Off-targeting of AID may result in mutations in non-immunoglobulin genes, including tumor suppressor gene TP53.
Aims
We explored the TP53 mutation patterns with regards to SHM
features emphasizing the differences between mutations occurring in
IGHV unmutated (U-CLL) and IGHV mutated (M-CLL)
groups of patients.
Methods
In order to reduce the selection bias, we used the set of
TP53 mutations detected using ultra-deep Next Generation
Sequencing (NGS) with high sensitivity (0.2%) allowing to consider
the minor subclonal mutations with less prominent selective
advantage. For NGS analysis, Illumina Miseq platform has been used
with average coverage 34788; (range 1674–177021). For variant
detection, an in house bioinformatics pipeline was established.
Statistical evaluation was performed by shearwater algorithm
computing Bayes classifiers based on a betabinomial model. Only
point substitutions were taken into account. Altogether, 464
TP53 mutations in 73 high risk CLL patients were
analyzed. 121 mutations were found in M-CLL cases and 343 mutations
were detected in U-CLL patients. The high number of mutations
should be attributed to the high number of minor subclonal
mutations detected mainly in patients in relapse after treatment.
In 60% of patients, results from repeated examinations were
included (2-4 examinations per patient; each mutation detected in
more than one consecutive sample was considered only once). 72.6%
of patients received treatment before the first or during
consecutive analyses.
Results
U-CLL showed a higher proportion of mutations in C:G pairs
comparing to M-CLL (66% vs. 51% of all mutations; P=0.003). Out of
these, G:C>A:T substitutions, the primary result of AID cytidine
deamination, were the prevalent events observed in U-CLL but not
M-CLL (59.6% vs. 40.3% of all C:G mutations; P=0.009). Focusing on
the AID-targeted sequence motif RGYW/WRCY, no difference between
the two subgroups was observed (2.5% vs. 3.1%; P=ns). However, we
found a significant overrepresentation of mutations in GNW motif in
U-CLL (14.58% of all mutations vs. 6.61% in M-CLL; P=0.025). GNW is
a strand-biased motif derived from RGYW most frequently targeted by
AID in IGLV genes. On the other hand,
TP53mutations detected in M-CLL cases showed the features
of targeting by polymerase eta: (i) frequent targeting of A:T pairs
(49% vs. 34% in U-CLL; P=0.003); with prominent strand bias
favoring A over T (13.8 fold vs. 3.1 fold in U-CLL; P=0.002; (ii)
prevalence of mutations in WA/TW motifs (40.5% vs. 23.91% in U-CLL;
P<0.0001) with strand bias favoring WA observed in both groups,
but extremely prominent in M-CLL (23.5 fold in M-CLL vs. 4.37 fold
in U-CLL; P= 0.014).
Summary
We documented the significantly
different patterns of TP53 mutations in U-CLL vs. M-CLL.
Mutations detected in U-CLL showed the features corresponding to
the first step of SHM process: deamination by AID with strand bias
possibly attributable to AID activity on the transcribed strand. In
contrast, spectra of mutations detected in M-CLL cases suggested
the more prominent involvement of polymerase eta during the second
SHM step.
Supported by CZ.1.07/2.3.00/30.0009, CZ.1.05/1.1.00/02.0068,
NT13519, NT13493, NT11218, MUNI/A/1180/2014,
NGS-PTL/2012-2015/no.306242, MSMT-CR (2013-2015, no.7E13008)
Keyword(s): Chronic lymphocytic leukemia, Somatic
hypermutation, Tumor suppressor
Datum přednesení příspěvku: 13. 6. 2015