Backgrounds. Glioblastoma multiforme (GBM, grade IV astrocytoma) is the most common adult primary brain tumor with high genetic and histomorphological variability. Cytogenetic diagnostic methods represent recently an integral part of glioblastoma diagnostics. Different types of glioblastomas are associated with distinct chromosomal aberrations that may provide useful information with respect to tumor classification, prognosis prediction, and response to therapy. Methods and Results. In this study, we present the molecular cytogenetic results of tumor specimens from 27 patients with glioblastoma multiforme diagnosis. We investigated chromosomal abnormalities
in touch preparations from central and peripheral parts of the tumor by interphase-fluorescence in situ
hybridization (I-FISH). This method was used to detect the incidence of the most frequent genetic abnormalities such as the polysomy of chromosome 7, monosomy of chromosome 10, the EGFR gene amplification, and p53 deletion. The results of I- FISH analyses showed monosomy 10 in 100 % of cases, polysomy 7 (2-5 copies of chromosome 7) in 93 % of cases, EGFR gene amplification was present in 26 % of tumors and p53 gene deletion in 22 % of cases. Conclusions. Our results confirm high frequency of cytogenetic abnormalities involved in the pathogenetic process of GBM which can be used as specific diagnostic and predictive markers.